Stochastic holin expression can account for lysis time variation in the bacteriophage λ.

نویسندگان

  • Abhyudai Singh
  • John J Dennehy
چکیده

The inherent stochastic nature of biochemical processes can drive differences in gene expression between otherwise identical cells. While cell-to-cell variability in gene expression has received much attention, randomness in timing of events has been less studied. We investigate event timing at the single-cell level in a simple system, the lytic pathway of the bacterial virus phage λ. In individual cells, lysis occurs on average at 65 min, with an s.d. of 3.5 min. Interestingly, mutations in the lysis protein, holin, alter both the lysis time (LT) mean and variance. In our analysis, LT is formulated as the first-passage time (FPT) for cellular holin levels to cross a critical threshold. Exact analytical formulae for the FPT moments are derived for stochastic gene expression models. These formulae reveal how holin transcription and translation efficiencies independently modulate the LT mean and variation. Analytical expressions for the LT moments are used to evaluate previously published single-cell LT data for λ phages with mutations in the holin sequence or its promoter. Our results show that stochastic holin expression is sufficient to account for the intercellular LT differences in both wild-type phages, and phage variants where holin transcription and the threshold for lysis have been experimentally altered. Finally, our analysis reveals regulatory motifs that enhance the robustness of lysis timing to cellular noise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic holin expression can account for lysis time variation in the bacteriophage l

The inherent stochastic nature of biochemical processes can drive differences in gene expression between otherwise identical cells. While cell-to-cell variability in gene expression has received much attention, randomness in timing of events has been less studied. We investigate event timing at the single-cell level in a simple system, the lytic pathway of the bacterial virus phage l. In indivi...

متن کامل

Improved lysis efficiency and immunogenicity of Salmonella ghosts mediated by co-expression of λ phage holin-endolysin and ɸX174 gene E

Bacterial ghosts (BGs) are empty cell envelopes derived from Gram-negative bacteria by bacteriophage ɸX174 gene E mediated lysis. They represent a novel inactivated vaccine platform; however, the practical application of BGs for human vaccines seems to be limited due to the safety concerns on the presence of viable cells in BGs. Therefore, to improve the lysis efficiency of the gene E, we explo...

متن کامل

Clocking out: modeling phage-induced lysis of Escherichia coli.

Phage lambda lyses the host Escherichia coli at a precisely scheduled time after induction. Lysis timing is determined by the action of phage holins, which are small proteins that induce hole formation in the bacterium's cytoplasmic membrane. We present a two-stage nucleation model of lysis timing, with the nucleation of condensed holin rafts on the inner membrane followed by the nucleation of ...

متن کامل

Identification and mutational analysis of bacteriophage PRD1 holin protein P35.

Holin proteins are phage-induced integral membrane proteins which regulate the access of lytic enzymes to host cell peptidoglycan at the time of release of progeny viruses by host cell lysis. We describe the identification of the membrane-containing phage PRD1 holin gene (gene XXXV). The PRD1 holin protein (P35, 12.8 kDa) acts similarly to its functional counterpart from phage lambda (gene S), ...

متن کامل

Evolutionary dominance of holin lysis systems derives from superior genetic malleability.

For the microviruses and the leviviruses, bacteriophages with small single-stranded genomes, host lysis is accomplished by expression of a single gene that encodes an inhibitor of cell wall synthesis. In contrast, phages with double-stranded DNA genomes use a more complex system involving, at minimum, an endolysin, which degrades peptidoglycan, and a holin, which permeabilizes the membrane in a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 11 95  شماره 

صفحات  -

تاریخ انتشار 2014